

Traffic-Shaping with fwbuilder under Linux

Dr. Ralf Schlatterbeck Open Source Consulting

Email: office@runtux.com
Web: http://www.runtux.com
Tel. +43/650/621 40 17

© 2011 Dr. Ralf Schlatterbeck Open Source Consulting · www.runtux.com · office@runtux.com

- 1

Initial Situation – Wishes	3
Network Diagram	4
Traffic Control	7
Example Traffic Shaping Configuration	10
Re-Classification	11
Limits of Traffic Shaping	18
Linux-Kernel Packet Travel	21
Help	27
Availability	28
Bibliography	29

© 2011 Dr. Ralf Schlatterbeck Open Source Consulting · www.runtux.com · office@runtux.com

2

Initial Situation – Wishes

- Firewall with Intranet and > 1 DMZ segment
- Homegrown iptables scripts to be replaced with fwbuilder configuration
- Wanted to include traffic shaping in the fwbuilder configuration
- fwbuilder supports multiple firewalls in a single configuration
- these firewall can share network objects
- nice for several company firewalls at several locations interconnected by (Open-) VPN

Network Diagram

Acknowledgements

These are some things I found on the net – besides the usual tutorials that helped me a lot

- Traffic Shaping with fwbuilder [Sch09] on classification of packets with fwbuilder and shaping with tc as it turned out this doesn't work for inbound shaping
- OpenWRT's qos-scripts by Felix Fietkau aka nbd also use HFSC, RED and SFQ for shaping
- it already contains reclassify targets and inbound and outbound shaping – but uses the imq device which is not in the kernel

© 2011 Dr. Ralf Schlatterbeck Open Source Consulting · www.runtux.com · office@runtux.com

- The /usr/lib/qos/tcrules.awk script from OpenWRT generates tc commands and contains a reference to [CJOS01]
- A patch to better document to hfsc apparently never merged
- Shorewall has special to rules to configure ifb
- A blog entry on getting more documentation out of tc by issuing clever help commands
- Ikml thread that started out modifying the dummy device for img functionality and turned into ifb

© 2011 Dr. Ralf Schlatterbeck Open Source Consulting · www.runtux.com · office@runtux.com

6

Traffic Control

Mechanisms to Achieve Traffic Control

- Traffic Shaping is often used synonymous to Traffic Control
- decide which packets to accept at which rate
- determine at which rate to send packets
- determine in which order to send packets
- tremendous power to re-arrange traffic flows
- ... is no substitute for adequate bandwidth [Bro06]
- + more predictable usage and bandwidth allocation
- complexity

Traffic Control

- Shaping: delay and/or drop packets to meet the desired rate
- Policing: limit traffic in a particular queue
- Classification: put packets in different classes which are treated differently
- We use the Hierarchical Fair Service Curve (HFSC) Algorithm [SZN00] for classification, shaping and policing
- At the leaf-nodes of the hierarchy we use Random Early Detection (RED) for bulk and Stochastic Fair Queuing (SFQ) for non-bulk traffic

Policy Rules: Traffic Shaping

- traffic classes: Express, Interactive, VPN, Normal, Bulk with corresponding "Mark" actions
- Mark actions defined as TagServices
- Express for time-critical services, (NTP, VoIP, ?Ping)
- Interactive for e.g. SSH
- VPN for site-to-site VPN traffic
- Normal: Web surfing
- Bulk: Downloads
- we can mark packets with such a mark and it will be put into the given traffic class
- everything not marked is Bulk

© 2011 Dr. Ralf Schlatterbeck Open Source Consulting · www.runtux.com · office@runtux.com

6

- Sometimes we want to re-classify some packets depending on their traffic-shaping class
- TCP ACK for non-bulk packet should be faster
- Don't want too large Express packets
- Don't want too large Interactive packets, e.g. we want SSH in Interactive but we don't want SCP in Interactive → reclassify large SSH packets
- Promote small VPN packets to Interactive
- Many of these need a match on the size of the packet
- we need to define a custom rule in fwbuilder

Example Traffic Shaping Configuration

	Source	Destination	Service	Interface	Direction	Action
	Traffic Shaping (9 rules)					
2	Any	Any	ntp upp from ntp	All		Express
3	Any	Any	Ssh TCP from ssh UDP domain UDP from domain	All		Interactive **
4	Any	Any	non-bulk ACK < 128	All		Interactive
5	Any	Any	OpenVPN TCP From OpenVPN UOP OpenVPN UOP From OpenVPN	All		**************************************
6	Any	Any	http https https from http	All		Normal
7	Any	Any	Express > 400	All		Normal
8	Any	Any	interactive > 1000	All		Normal
9	Any	Any	VPN < 400	All		Interactive

© 2011 Dr. Ralf Schlatterbeck Open Source Consulting · www.runtux.com · office@runtux.com

- Traffic Control: HFSC
 - with HFSC we can form a hierarchy of classes and specify bandwith and realtime requirements
 - realtime allocate a slightly higher priority to new flows to minimize delay
 - ... even if allocation for other classes is slightly violated (not their realtime guarantees)
 - for each class in the hierarchy specify bandwidth
 - leaf-nodes specify packet or frame size and delay
 - borrow from siblings if these need less bandwidth
 - "Fair": even after borrowing the guaranteed bandwidth isn't violated

raffic Control: RED

- Random Early Detection (or "Drop") [FJ93]
- Even if not yet congested do early notification
- can either (randomly) drop packets early
- ... or use explicit congestion notification (ECN) TCP option
- observation: with full queues packets of all flows are dropped
- ... which leads to lots of retransmissions
- with RED we get better utilisation
- but it's hard to configure right [CJOS01, Flo97]

Traffic Control: SFQ

- Stochastic Fair Queuing based on Fair Queuing by John Nagle [Nag85, Nag87]
- large number of queues served round robin (e.g. 128 queues)
- flows are allocated to gueues by a hash function
- hash function changes periodically
- end result is a stochastically fair allocation
- ... which can break with misbehaved nodes (e.g. file-sharing with lots of connections)
- ⇒ use RED for file-sharing traffic

© 2011 Dr. Ralf Schlatterbeck Open Source Consulting · www.runtux.com · office@runtux.com

© 2011 Dr. Ralf Schlatterbeck Open Source Consulting · www.runtux.com · office@runtux.com

Traffic Control: fwbuilder Configuration

- to generate traffic control configuration we use a hook in fwbuilder called an epilog script
- set up special devices for traffic shaping
- generate HFSC, RED, SFQ queueing disciplines (adiscs)
- work special magic for inbound shaping
- restore OpenVPN-generated routes
- use advanced routing mechanisms where fwbuilder isn't expressive enough
- in fwbuilder click on the firewall (e.g. "vienna")
- ... then on "Firewall Settings ..."

Traffic Control: fwbuilder Configuration

```
import sys
from rsclib.trafficshape import Traffic Class as TC
from rsclib.trafficshape import Shaper
root = TC (100)
fast = TC (90, parent = root)
slow = TC (10, parent = root)
express = TC (1, 128, delay_ms = 10,
   parent = fast, is bulk = False,
   fwmark = '0x10/0x1f0')
shaper = Shaper ("$TC", root)
for interface, bandwidth in \
  (('eth2', 16000 * 0.98), ('ifb0=eth2', 16000 * 0.98)):
    print shaper.generate (bandwidth, interface)
```


Traffic Control: fwbuilder Configuration

© 2011 Dr. Ralf Schlatterbeck Open Source Consulting · www.runtux.com · office@runtux.com

imits of Traffic Shaping

- outbound shaping also needs to reduce the bandwidth
- otherwise we would send at Ethernet speed
- ... and have a long queue in the router
- because the upstream bandwidth is below Ethernet speed
- → use same mechanism for inbound and outbound shaping
- works quite well if inbound traffic is mainly TCP

Limits of Traffic Shaping

- we can't really control our incoming traffic
- no chance against malicious traffic, e.g., Distributed Denial of Service (DDoS)
- but TCP has flow control and congestion control mechanisms
- when it doesn't receive an ACK for a packet it will reduce the sending rate
- so we can shape traffic by dropping packets
- we need to limit bandwidth to slightly below the maximum so the queue is in our firewall not in the upstream router

© 2011 Dr. Ralf Schlatterbeck Open Source Consulting · www.runtux.com · office@runtux.com

Linux and Inbound Shaping

- Linux can't do inbound shaping
- trick: redirect traffic to Intermediate Functional Block (ifb) device
- ... and there we do *outbound* shaping
- after shaped traffic leaves ifb it is reinserted at the point where we redirected
- unfortunately redirect happens before the mangle table in the PREROUTING chain
- so we need a different mechanism to classify traffic
- remember: for outbound traffic we use firewall marks to classify traffic for shaping

Linux-Kernel Packet Travel

© 2011 Dr. Ralf Schlatterbeck Open Source Consulting · www.runtux.com · office@runtux.com

23

Linux and Inbound Shaping

- we don't want different mechanisms for classifying inbound and outbound traffic
- solution: translate firewall mark rules to linux traffic control to commands


```
iptables -A PREROUTING -p udp -m udp \
--sport 123 -j MARK --set-xmark 0x10/0x1f0
iptables -A PREROUTING -p udp -m udp \
--dport 123 -j MARK --set-xmark 0x10/0x1f0
```

© 2011 Dr. Ralf Schlatterbeck Open Source Consulting · www.runtux.com · office@runtux.com

Linux and Inbound Shaping

iptables -A PREROUTING -p udp -m udp \ --sport 123 -j MARK --set-xmark 0x10/0x1f0

This is translated to

tc filter add dev eth0 protocol ip \ parent ffff: prio 35 basic match 'u32 (u8 0x11 0xff at 0x9) and (u32(u16 0x7b 0xffff at 0x14))'action ipt -j MARK --set-xmark 0x10/0x1f0 \ action mirred egress redirect dev ifb0

Ugly? Yes. But it works.

Linux and Inbound Shaping: Re-Classification


```
iptables -A PREROUTING -m mark --mark \
0x20/0x1f0 - m length --length 1000:65535 \
-j MARK --set-xmark 0x80/0x1f0
```

This is translated to

```
tc filter add dev ifb0 protocol ip \
parent 1: prio 7 basic match \
 'meta(fwmark mask 0x1f0 eg 0x20) \
and meta(pkt_len gt 999)' flowid 1:6
```


Linux and Inbound Shaping: TC-Translator

- Normal mark rules are translated to ipt -j MARK action + mirred egress redirect to ifb-device
- Re-Classification rules are translated to flowid statement in the ifb-device to put the packet into the correct queue
- Rules from iptables are processed in reverse order
- remember: Rules in tc are terminating, rules in iptables are not

© 2011 Dr. Ralf Schlatterbeck Open Source Consulting · www.runtux.com · office@runtux.com

Setting the "nexthdr" pointer for IPv4 in tc

- I've never figured out how to correctly determine the offset of the "next protocol" (i.e. UDP or TCP) in the presence of IP options with the tc basic match
- I'm aware how to do this using hash tables and u32
- but hash tables are unusable with basic match
- others have already called this extremely non-obvious

Linux and Inbound Shaping

To sum up:

- We do traffic shaping just by specifying appropriate rules in the fwbuilder GUI
- The dirty work is done behind the scenes:
 - classification of traffic according to firewall marks for outbound traffic
 - translation of firewall marks to appropriate tc commands and redirection to ifb device for inbound shaping

© 2011 Dr. Ralf Schlatterbeck Open Source Consulting · www.runtux.com · office@runtux.com

Availability

or see \rightarrow 16

Get scripts from rsclib.sourceforge.net

```
% python
from rsclib import trafficshape
help (trafficshape)
```


[Bro06] Martin A. Brown. Traffic control howto. Howto, Linux IP, October 2006.

[CJOS01] Mikkel Christiansen, Kevin Jeffay, David Ott, and F. Donelson Smith. Tuning RED for web traffic. IEEE/ACM Transactions on Networking, 9(3):249-264, June 2001.

Sally Floyd and Van Jacobson. Random [FJ93] early detection gateways for congestion [Flo97]

avoidance

Bibliography

Sally Floyd. Discussions of setting parameters. Email, International Computer Science Institute (ICSI) Networking Group

Networking, 1(4):397–413, August 1993.

IEEE/ACM Transactions on

(ICIR), 1997.

John Nagle. On packet switches with [Nag85] RFC 970, Internet infinite storage. Engineering Task Force, December 1985.

© 2011 Dr. Ralf Schlatterbeck Open Source Consulting · www.runtux.com · office@runtux.com

31

© 2011 Dr. Ralf Schlatterbeck Open Source Consulting · www.runtux.com · office@runtux.com

Bibliography

John Nagle. On packet switches with infi-[Nag87] nite storage. IEEE Transactions on Communications, 35(4):435-438, April 1987.

[Sch09] Michael Schwartzkopff. Howto manage traffic shaping with fwbuilder. Howto. MultiNET Services GmbH, April 2009.

[SZN00] Ion Stoica, Hui Zhang, and T. S. Eugene Ng. A hierarchical fair service curve algorithm for link-sharing, real-time and priority

Bibliography

services. IEFE/ACM Transactions on Networking, 8(2):185–199, April 2000.